Zero kinetic energy photoelectron spectroscopy of triphenylene.
نویسندگان
چکیده
We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm(-1). The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.
منابع مشابه
High resolution study of low-lying correlation satellites below 25 eV in xenon probed by pulsed-field-ionization-zero-kinetic- energy photoelectron spectroscopy
متن کامل
Zero electron kinetic energy and photoelectron spectroscopy of the XeI anion
The XeI anion and the corresponding neutral X1/2, I3/2, and II1/2 electronic states have been studied by means of zero electron kinetic energy ~ZEKE! and photoelectron spectroscopy. The ZEKE spectra show rich and well-resolved progressions in the low-frequency vibrations of the anion and the neutral van der Waals complexes. From our spectroscopic data we construct model potentials for the anion...
متن کاملRotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 12 Rydberg state
Articles you may be interested in Dynamics of high‐n Rydberg states employed in zero kinetic energy‐pulsed field ionization spectroscopy via the F 1Δ2, D 1Π1, and f 3Δ2 Rydberg states of HCl Resonance enhanced multiphoton ionization photoelectron spectroscopy and pulsed field ionization via the F 1Δ2(v'=0) and f 3Δ2(v'=0) Rydberg states of HCl
متن کاملResonantly enhanced multiphoton ionization and zero kinetic energy photoelectron spectroscopy of Benzo[e]pyrene
We report zero kinetic energy (ZEKE) photoelectron spectroscopy via resonantly enhanced multiphoton ionization (REMPI) for benzo[e]pyrene. Extensive vibronic coupling between the first electronically excited state and a nearby state allows b2 symmetric modes to be observed which would normally be Franck-Condon (FC) disallowed. These vibronic modes are comparable in intensity to the FC allowed a...
متن کاملZero kinetic energy-pulsed field ionization and resonance enhanced multiphoton ionization photoelectron spectroscopy: Ionization dynamics of Rydberg states in HBr
The results of rotationally resolved resonance enhanced multiphoton ionization photoelectron spectroscopy and zero kinetic energy-pulsed field ionization studies on HBr via various rotational levels of the F D2 and f D2 Rydberg states are reported. These studies lead to an accurate determination of the lowest ionization threshold as 94 098.961 cm. Observed rotational and spin–orbit branching ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 140 24 شماره
صفحات -
تاریخ انتشار 2014